CİTRIX®

Technical and commercial comparison of Citrix XenServer and VMware vSphere

Customers exploring server virtualization solutions should consider the technical and commercial aspects of Citrix XenServer and compare them to VMware vSphere

CİTRİX

Overview

This document provides a technical and commercial comparison of Citrix® XenServer® and VMware® vSphere™, two of the leading server virtualization products on the market. This comparison illustrates that XenServer is a powerful and feature-rich alternative to vSphere and distinguishes itself in a number of key areas including open architecture, performance, storage integration and total cost of ownership (TCO).

- Citrix XenServer is a free virtualization platform based on the open-source Xen® hypervisor. It includes Citrix® XenCenter®, a multi-server management console providing management of critical operations such as virtual machine templates and snapshots, shared storage support, virtual networking, resource pools and Citrix® XenMotion™ live migration. Citrix offers advanced management capabilities in the premium editions of XenServer: Advanced, Enterprise and Platinum.
- VMware vSphere is a server virtualization platform that includes either the VMware® ESX™ or ESXi™ hypervisor and associated management tools. vSphere is available in four editions: Standard, Advanced, Enterprise and Enterprise Plus. vSphere servers are managed from vCenter Server, VMware's multi-server management console. While the hypervisor is free, VMware requires that management via vCenter Server be purchased separately. Advanced management features such as vCenter Server Heartbeat (high availability for vCenter), Site Recovery Manager and Lab Manager also require independent licenses.

Comparisons

System architecture

Both products feature bare-metal or Type 1 hypervisor technologies that are installed directly onto physical servers without requiring a host operating system (OS). It is widely accepted that this bare-metal approach offers significantly better performance and manageability than solutions reliant on a host OS, such as VMware GSX Server® (GSX).

VMware architecture

VMware ESX is a first-generation architecture that predates virtualization-aware operating systems, including most Linux® distributions and Microsoft® Windows Server® 2008, and processors such as Intel® VT and AMD-V™. Its primary approach to virtualization can best be described as *binary translation*: each OS request to the processor is intercepted and translated into a virtualization-friendly instruction. For example, a *halt* request from the OS to the processor will suspend only the specific virtual machine (VM), not the entire system, releasing resources to other VMs. In this manner, ESX tricks the guest operating system into thinking it is running on physical hardware. The need to perform so much of this work in software results in a very sophisticated and complex system.

As the first layer of software interacting with the hardware, ESX shows the considerable investment VMware has made in the development of proprietary device drivers to support the variety of network and storage hardware available on commercial servers. As new hardware devices become available, VMware-specific drivers need to be written to support them.

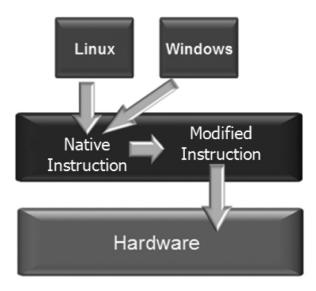


Figure 1. VMware ESX binary translation

Citrix architecture

The architecture of XenServer is quite different from VMware ESX, as XenServer development coincided with the availability of virtualization-aware Intel and AMD processors and operating systems. XenServer is built on the open-source Xen hypervisor, which is also the basis for nearly two dozen commercial virtualization products and the engine powering the world's largest virtualization deployment, the Amazon™ Elastic Compute Cloud™.

Rather than using binary translation like VMware, XenServer uses a combination of paravirtualization and hardware-assisted virtualization. XenServer was the first solution on the market to employ paravirtualization, which allows a guest operating system to be fully aware that it is being run on virtualized hardware. This collaboration between the OS and the virtualization platform enables the development of a simpler, leaner hypervisor that offers best-in-class performance.

Today, XenServer supports paravirtualization with a number of Linux distributions, including Red Hat® Enterprise Linux®, Novell® SUSE, Debian®, Oracle® Enterprise Linux and CentOS. For guest operating systems that can't be fully paravirtualized, such as Microsoft Windows®, XenServer is designed to leverage hardware virtualization assist technologies, widely available on today's Intel VT and AMD-V processors.

Despite initially downplaying the merits of paravirtualization, VMware has begun to adopt it within ESX in the form of its VMI technology. The release of a VMI performance white paper further highlights VMware's belief that paravirtualization is superior to binary translation. Unfortunately, thus far, only a few Linux operating systems (specific versions of SUSE and the communitysupported Fedora) are enabled to run with VMware VMI on vSphere.

CİTRİX

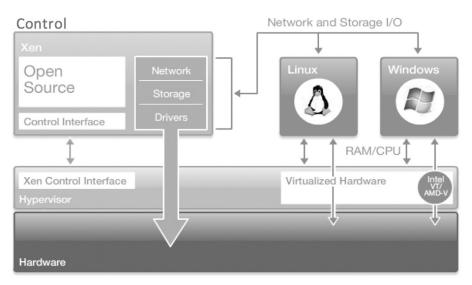


Figure 2. XenServer hypervisor architecture

Device Drivers

The XenServer approach to device drivers is also significantly different from the one used by VMware. With XenServer, all VM interactions with the hardware are managed through the *Domain 0* control domain, which itself is a specially privileged VM running on top of the hypervisor. XenServer Domain 0 is shown in the upper-left-hand side of Figure 2. Domain 0 runs a hardened, optimized instance of Linux. It's important to recognize that to the administrator, Domain 0 is part of the overall XenServer system and requires no additional installation or management. Domain 0 enables XenServer to leverage standard open-source Linux device drivers, resulting in extremely broad hardware support. Because of this design, XenServer can even run on laptops or workstations—systems on which VMware's proprietary drivers are much less likely to function.

Installation, configuration, and administration

XenServer has a straightforward installation process, often referred to as the 10 minutes to Xen experience. XenServer is installed on the host systems using a CD or network-based installation process. The XenCenter GUI-based administration console is then installed on any Windows® PC or server. System configuration information is kept in an internal data store within the XenServer control domain and is replicated across all servers that are managed together (forming a resource pool). The resource pool configuration provides highly available core management services that run on a management architecture with no single point of failure. This architecture avoids the need for a separate database server for the core management functions.

Similar to XenServer, the VMware ESX hypervisor is installed on the host servers. For management and configuration VMware uses vCenter Server, which runs as a Windows service on a separate management server. Unlike XenCenter, vCenter requires a third-party database for storage and management of host system configurations. For redundancy and availability of the core management services, VMware recommends clustering software such as its vCenter Server Heartbeat add-on product.

Guest OS support

VMware and XenServer both support the most popular Windows and Linux operating systems, including Windows XP®, Windows Vista®, Windows 7, Windows 2000 Server, Windows Server 2003, Windows Server 2008, Red Hat Linux, SUSE Linux and others. VMware and XenServer are certified for Windows according to the requirements of the Microsoft Server Virtualization Validation Program (SVVP).

Storage integration

Storage is one of the most important considerations for server virtualization deployments. Both solutions offer support for storage of VMs on local discs, iSCSI or Fiber Channel-based storage area networks (SANs), or network attached storage (NAS). Both platforms require use of a SAN or NAS to support advanced features such as live migration and high availability.

For architecting a virtual infrastructure, VMware recommends its proprietary VMFS file system for storage (although raw disc options are available). VMFS is the default storage system for VM files, with both local and shared (SAN or NAS) storage. VMFS is a clustered file system that, when used with SANs, allows VMware vStorage to take control of certain storage functions, including provisioning and snapshotting, no matter which vendor's array is being used.

XenServer takes a wholly different approach to storage. XenServer does not impose its own file system on storage systems, but rather leverages the native storage capabilities more directly. For example, with a file-based shared storage system such as NFS, XenServer VMs are stored directly using Microsoft Virtual Hard Disc (VHD format. With block-based storage such as iSCSI or Fiber Channel SANs, XenServer extends VHD with the open Logical Volume Manager (LVM) standard for volume management.

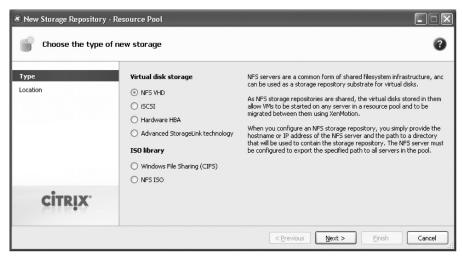


Figure 3. XenServer Storage Repository Wizard

CİTRIX®

This differentiated approach to storage integration with XenServer comes in the form of Citrix® StorageLink™. StorageLink enables the virtualization administrator to directly use features of industry-leading arrays such as those from HP, NetApp, Dell EqualLogic, EMC, Hitachi, IBM and others. This approach ensures that common storage management process and practices can be leveraged across both virtual and physical environments.

For example, a VM snapshot request within XenCenter will offload this task to the SAN through an interface with the SAN vendor's API. In this manner, StorageLink can optimize performance and permit virtualization administrators to use the advanced features of the array exactly as they were intended, including snapshots, clones and thin provisioning.

In addition to vendor-specific APIs, StorageLink supports the ANSI standard for storage management (Storage Management Initiative – Specification), enabling easy integration of many storage vendors' equipment.

The administrator is completely shielded from the underlying implementation details through the XenCenter Storage Repository creation wizard (shown on page 5).

Provisioning Services

Citrix Provisioning Services streaming technology allows server workloads (operating system images, applications, configurations) to be provisioned and re-provisioned in real-time from a single shared-disk image. In doing so, administrators can completely eliminate the need to manage and patch individual systems. Instead, all image management is done on the master image. Provisioning services functionality is ideal for server farms such as Citrix[®] XenApp[™], web servers and virtual desktops.

Dynamic workload streaming can be used to rapidly deploy server workloads to the most appropriate server resources (physical or virtual) at any time during the week, month, quarter or year. It is particularly useful for applications that may be regularly migrated between testing and production environments or for systems that might require physical deployments for peak user activity during the business cycle. Provisioning services is a unique feature that only Citrix offers as a feature of its products.

Virtual machine backup and recovery

XenServer and vSphere offer a range of VM snapshot and automation capabilities for backup and recovery needs, included in that range of options is support for traditional agent-based backup solutions from a variety of providers. XenServer improves upon this agent-based approach for Windows VMs through the enablement of a product-specific Volume Shadow-copy Service (VSS) provider. For example, when a backup agent (such as Symantec™ Netbackup™) makes a call to the Windows VSS provider, the XenServer VSS provider intercepts the call and redirects it to perform a disc-level snapshot. This disc-level snapshot is a differential copy and as such takes as little as five seconds to complete. In this manner, regular backups can be performed without impact to the performance of the XenServer host and with minimal backup impact of the guest. The VM protection and recovery feature in the Platinum Edition of XenServer builds on this capability by allowing administrators to create policies to automatically take regularly scheduled VM snapshots and to archive the images to a specified storage location.

VMware offers a feature called Data Recovery in vSphere for backup of VMs. Data Recovery is a plug-in for vCenter Server that schedules regular disc snapshots for VMs. Some customers see this as an alternative to traditional agent-based approaches; however, Data Recovery does not offer applicationlevel awareness, which is often cited by customers as a reason to use agent-based solutions for workloads such as SQL Server®, Oracle Database and Application Suite and Microsoft® Exchange® and Active Directory®.

High availability and fault tolerance

During server consolidation efforts, one of the key concerns is often the impact of failure of a virtualization host. High availability ensures critical VMs are automatically restarted on another physical host should the original host running the VM unexpectedly fail. This can reduce the amount of downtime for the workload, as well as eliminate the need for administrative intervention. Both vSphere and XenServer have high-availability features that offer granular policies governing the behavior of specific VMs after a host failure.

Additionally, both Citrix and VMware offer options for fault tolerance, a feature that maintains mirrored instances of VMs running on separate hosts. In the event of a host failure, the mirrored instance can maintain continuity of the workload. With vSphere, fault tolerance is offered in the Advanced Edition and above and is only supported for VMs with 1 vCPU. Citrix has partnered with several third-party vendors, such as Marathon Technologies and Stratus, to create more robust fault tolerance options for XenServer.

Workload balancing

Determining the optimal placement of a VM becomes an increasing challenge as the number of VMs increases. Often load factors on a host or within a VM can create situations where a given resource pool is underperforming relative to its potential. The task of managing the performance of the virtual infrastructure includes not only where best to start a given VM, but also how to optimize the entire pool for normal operations and critical events such as a host failure. These operations are further complicated when sustainability initiatives such consolidating VMs as part of a data center power management plan. XenServer offers workload balancing (WLB), which leverages utilization data from the CPU, memory, disc I/O, and network I/O on the hosts and VMs to guide the initial and ongoing host location for VMs. There are two optimization modes for WLB: optimize for performance and optimize for density. Optimizing for performance ensures that minimum performance thresholds are maintained, whereas optimizing for density places VMs on the minimum number of hosts to reduce power consumption.

vSphere Distributed Resource Scheduler (DRS) is a feature that guides the initial VM placement and partially or fully automates load management of VMs. Unlike WLB, DRS does not allow much customization of the load management algorithm and is based only on CPU and memory utilization.

CİTRIX®

Disaster recovery

Disaster recovery (DR) involves the duplication of virtual server infrastructure and data at remote facilities for recovery in case an event makes the primary site inoperable or inaccessible. Virtualization simplifies disaster recovery in many ways, as server workloads packaged as VMs are easier to transport and restart on remote systems.

XenServer and vSphere support multi-site deployments, whereby VMs can be made available in primary and DR sites. In each case, both the VMware and Citrix DR solutions rely on SAN-based replication technologies to keep VM files and configuration data current at a backup location. VMware offers Site Recovery Manager, an add-on product that is essentially a workflow engine to orchestrate the DR of systems virtualized with vSphere. VMware licenses Site Recovery Manager on a per-protected-VM model. Unlike vSphere, XenServer includes StorageLink Site Recovery in the Platinum Edition, with the license covering an unlimited number of VMs. StorageLink Site Recovery simplifies configuration of VM replication and recovery across primary and secondary sites, allowing failover to a secondary site and fail back once the primary site has recovered. StorageLink Site Recovery simplifies the validation of failure plans by allowing recovery plan testing to occur without impacting any of the replication events required to back up VMs.

Dynamic memory control

Memory optimization involves guaranteeing minimum levels of memory as well as efficiently reclaiming unused memory and allocating it to VMs that require it. Both XenServer and vSphere offer memory optimization technologies as part of their virtualization platforms. vSphere leverages guest ballooning, page sharing and memory compression as the primary memory optimization technologies and will over-commit the physical memory on the vSphere host if required. In the event over-commitment occurs, the hypervisor will swap out memory to disc with a corresponding performance impact. Memory compression seeks to minimize this performance impact by reducing the time to store and retrieve the memory from disc.

Page sharing is a memory optimization technique designed under the assumption that core operating system modules used in multiple VMs are identical and can be shared with a boost in memory available to applications. While this assumption is valid in older operating systems, many modern operating systems have implemented security and performance optimizations that minimize the impact of page sharing.

Because of these security and performance concerns, dynamic memory optimization in XenServer is based on the concept of a guest balloon. Dynamic memory control allows administrators to define memory boundaries in which a workload can meet its service level agreements without allocating excessive memory or incurring performance penalties due to swap. XenServer dynamic memory control allows the host memory to be over-subscribed, but never overcommitted. Dynamic memory control is available in all premium versions of XenServer and seamlessly works with critical components such as XenMotion and workload balancing.

Virtual Network Switch

A virtual network switch is a logical switching fabric that is built into the virtual infrastructure and enables management of virtualized network and security profiles, as well as virtual machine configurations, as they migrate across physical hosts. Distributed virtual network switching allows a multi-tenant, highly secure and extremely flexible network fabric to be created, enabling customers to move beyond server consolidation and into dynamic resource allocation.

XenServer and vSphere both offer distributed virtual switches. In XenServer the distributed virtual switch is part of the free version and the virtual switch controller, which allows network management, grouping and traffic shaping, is included in all premium versions. XenServer DVS controller supports critical network operations tasks such as monitoring VM traffic (RSPAN), network access and performance monitoring (NetFlow) and access control restrictions (ACLs). However, the virtual distributed switch is only available in the Enterprise Plus version of vSphere.

System maintenance

Both XenServer and vSphere require some regular maintenance to apply software updates and patches. Because both offer live migration features, patching and updates to the hypervisor can be performed without incurring downtime for VMs.

The VMware product includes automated patching for the hypervisor as well as guest operating systems. As a complex and sophisticated software system, vSphere requires significantly more patching and updates than other system software such as the BIOS or device drivers. The VMware VI 3.5 updates site lists hundreds of patches that have been issued since the product was launched in December 2007, and the automated update process is touted by VMware as a way of managing these updates.

By contrast, Citrix has issued fewer than 10 hotfix updates for XenServer since its release in September 2008. The company includes automated update features in XenCenter for applying system updates. XenServer does not include patching features for guests; instead, it leaves this task to the variety of products from OS vendors (and their ecosystem partners) or to its own unique provisioning services.

At a glance: XenServer and VMware

	Citrix XenServer 5.6 FP1	VMware vSphere 4.1
Pricing model	Per server: No restriction on processors or cores per processor	Per processor: Penalizes use of more-powerful servers and higher consolidation ratios
Multi-core processor support	Free, no restrictions	vSphere Standard and Enterprise Editions are restricted from use on 6+ core processors.
Bare-metal deployment	Free	Yes
P2V and V2V migration tools	Free	Yes
Multi-server management	Free	vCenter Server is \$6,000-\$8,000 extra.
Resource pools, shared storage	Free	Yes: Standard Edition and higher
VM snapshots	Free	Yes: Standard Edition and higher
Real-time performance monitoring	Free	Yes: Standard Edition and higher
Live motion, VM backup enablement	Free	Yes: Advanced Edition and higher
8 vCPU support for VMs	Free	Yes: Enterprise Plus Edition only
High performance for Windows	Free	<u>Virtualization Review</u> called VMware "the pokiest" and XenServer "the Porsche."
High performance for Linux	Free	VMware has limited support for paravirtualization
Maintenance requirements	Less than 10 hotfix/updates since Sept 2008	Hundreds of patches for VI 3.5 since release in December 2007
VM high availability (HA)	Yes, Advanced Edition	Yes: Standard Edition and higher
HA of core management services	Yes, Advanced Edition	vCenter Server Heartbeat is \$12,000-\$16,000 extra.
Historical performance monitoring	Yes, Advanced Edition	Yes: Standard Edition and higher
Administrator alerts	Yes, Advanced Edition	Yes: Standard Edition and higher
Dynamic memory configuration	Yes, Advanced Edition	Yes; Standard Edition and higher
Distributed switch	Yes, Advanced Edition	Yes; Enterprise Plus Edition only
StorageLink	Yes, Enterprise Edition	Nothing comparable
Provisioning services for VMs	Yes, Enterprise Edition	Nothing comparable
Workload balancing	Yes, Enterprise Edition	Yes: Enterprise Edition and higher
Role-based administration	Yes, Enterprise Edition	Yes; Standard Edition and higher
Disaster recovery enablement	Yes, Platinum Edition	Site Recovery Manager: \$2,000 extra, per processor
Lab management	Yes, Platinum Edition	Lab Manager is \$1,500+ extra per processor.
Stage management	Yes, Platinum Edition	Stage Manager is \$1,500+ extra per processor.
VM fault tolerance	Products from <u>Marathon</u> <u>Technologies</u> and Stratus	Yes: Advanced Edition and higher (for VMs with 1 vCPU)
"Enterprise Ready" according to Burton Group	Yes	Yes

Licensing and Pricing

As this paper has shown, XenServer and vSphere both provide enterprise virtualization and management functionality. In addition XenServer, by leveraging the inherent benefits of paravirtualization and virtualization assist technologies, provides increased workload performance and density. The final area of comparison is licensing and pricing and how they translate into business value.

In this arena Citrix differs dramatically from VMware. Rather than a per-processor model, XenServer is licensed per host server and support is offered on a per-instance basis. This approach provides additional value for the customer looking to maximize a virtualization budget and stands in stark contrast to the per-processor licensing path, as the following examples show.

Sample pricing comparisons

The following example shows cost comparisons of XenServer and vSphere for the consolidation of physical servers.

Example 1: Consolidation of 120 physical servers to 15, using two-processor servers and an 8:1 consolidation ratio.

XenServer 5.6 FP1 Advanced Edition	VMware vSphere 4.x* Standard Edition
Capabilities: Multi-server management, resource pools, XenMotion, HA, memory optimization	Capabilities: Multi-server management, resource pools, vMotion, HA, dynamic memory
15x XenServer Advanced Edition: \$15,000 (Includes 1 year of Citrix Subscription Advantage™) 24x7 technical support: \$3,000 x 3 years = \$9,000 SA renewal: \$325 / host x 2 years = \$9,750	vSphere Enterprise Plus, three-year production support: \$54,540 (30 processors) vCenter Server + three-year production support: \$3,139 vCenter Server Heartbeat, three-year production support: \$16,366
Total three-year cost: \$33,750 XenServer savings: 55%	Total three-year cost: \$74,045

Example 2: Consolidation of 120 physical servers to 12, using four-processor servers and a 10:1 consolidation ratio.

XenServer 5.6 FP1 Enterprise Edition	VMware vSphere 4.x* Enterprise Plus
Capabilities: Multi-server management, resource pools, XenMotion, memory optimization, HA, WLB, distributed switch	Capabilities: Multi-server management, resource pools, vMotion, dynamic memory, HA, DRS, distributed switch
12x XenServer Enterprise Edition: \$30,000 (Includes 1 year of Subscription Advantage) Technical Support: \$3,000 x 3 years = \$9,000 SA renewal: \$325 / host x 2 years = \$7,800	vSphere Enterprise Plus, three-year production support: \$274,704 (48 processors) vCenter Server + three-year production support: \$3,139 vCenter Server Heartbeat, three-year production support: \$16,366
Total three-year cost: \$46,800 XenServer Savings: 84%	Total three-year cost: \$294,209

^{*}Pricing from VMware online store as of February, 2011

Conclusion

Just a few years ago, customers looking for server virtualization solutions had limited options. The server virtualization market has entered a new phase in which underlying innovations from Intel and others have enabled the development of powerful and capable solutions such as Citrix XenServer. For customers, XenServer offers a clear alternative to vSphere. With XenServer, Citrix not only provides a feature-rich virtualization platform that meets or exceeds all the functionality of vSphere but, as this white paper has shown, XenServer surpasses vSphere in a number of areas including its open architecture, performance, storage integration and business value.

Worldwide Headquarters

Citrix Systems, Inc. 851 West Cypress Creek Road Fort Lauderdale, FL 33309, USA T +1 800 393 1888 T +1 954 267 3000

www.citrix.com

Americas

Citrix Silicon Valley 4988 Great America Parkway Santa Clara, CA 95054, USA T +1 408 790 8000

Europe

Citrix Systems International GmbH Rheinweg 9 8200 Schaffhausen, Switzerland T+41 52 635 7700

Asia Pacific

Citrix Systems Hong Kong Ltd. Suite 6301-10, 63rd Floor One Island East 18 Westlands Road Island East, Hong Kong, China T+852 2100 5000

Citrix Online Division

6500 Hollister Avenue Goleta, CA 93117, USA T +1 805 690 6400

About Citri

Citrix Systems, Inc. (NASDAQ:CTXS) is a leading provider of virtual computing solutions that help companies deliver IT as an on-demand service. Founded in 1989, Citrix combines virtualization, networking, and cloud computing technologies into a full portfolio of products that enable virtual workstyles for users and virtual datacenters for IT. More than 230,000 organizations worldwide rely on Citrix to help them build simpler and more cost-effective IT environments. Citrix partners with over 10,000 companies in more than 100 countries. Annual revenue in 2010 was \$1.87 billion.

©2011 Citrix Systems, Inc. All rights reserved. Citrix®, XenServer®, XenCenter®, XenMotion®, StorageLink™, Citrix Workflow Studio™, Citrix Subscription Advantage™ and XenApp™ are trademarks of Citrix Systems, Inc. and/or one or more of its subsidiaries, and may be registered in the United States Patent and Trademark Office and in other countries. All other trademarks and registered trademarks are property of their respective owners.